I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

Metric locating domination

Binary locating domination ¹

Ignacio M. Pelayo²

BWIC 2011 ³

¹J. Cáceres, C. Hernando, M. Mora, L. Moreira, M. L. Puertas. ²UPC, Catalunya, Spain, Europe, The Earth, Solar System, Milky Way. ³LaBRI, Aquitaine, France, Europe, The Earth, Solar System; Milky Way:

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1ST RLZ THM

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

G = (V, E) is a simple finite connected graph. For every $u \in V$,

$$N(u) = \{v \in V : uv \in E\}$$
, and $N[u] = N(u) \cup \{u\}$

▲□ > ▲□ > ▲豆 > ▲豆 > ▲豆 > ④ < ⊙

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA

M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK G = (V, E) is a simple finite connected graph. For every $u \in V$,

$$N(u) = \{v \in V : uv \in E\}$$
, and $N[u] = N(u) \cup \{u\}$.

▷ A set Ω of vertices in a graph *G* is a *dominating set* if every vertex of $V(G) \setminus \Omega$ has a neighbour in Ω .

-

Dac

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M. L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK G = (V, E) is a simple finite connected graph. For every $u \in V$,

 $N(u) = \{v \in V : uv \in E\}$, and $N[u] = N(u) \cup \{u\}$.

▷ A set Ω of vertices in a graph *G* is a *dominating set* if every vertex of $V(G) \setminus \Omega$ has a neighbour in Ω .

▷ That is, if for every $u \in V(G) \setminus \Omega$, $N(u) \cap \Omega \neq \emptyset$

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M. L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLI

Trees

SOME FURTHER WORK G = (V, E) is a simple finite connected graph. For every $u \in V$,

 $N(u) = \{v \in V : uv \in E\}$, and $N[u] = N(u) \cup \{u\}$.

- ▷ A set Ω of vertices in a graph *G* is a *dominating set* if every vertex of $V(G) \setminus \Omega$ has a neighbour in Ω .
- ▷ That is, if for every $u \in V(G) \setminus \Omega$, $N(u) \cap \Omega \neq \emptyset$
- ▷ The *domination number* of *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*.

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M. L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLI

Trees

SOME FURTHER WORK G = (V, E) is a simple finite connected graph. For every $u \in V$,

 $N(u) = \{v \in V : uv \in E\}$, and $N[u] = N(u) \cup \{u\}$.

- ▷ A set Ω of vertices in a graph *G* is a *dominating set* if every vertex of $V(G) \setminus \Omega$ has a neighbour in Ω .
- ▷ That is, if for every $u \in V(G) \setminus \Omega$, $N(u) \cap \Omega \neq \emptyset$
- ▷ The *domination number* of *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*.
- ▷ Dominating sets of order $\gamma(G)$ are called γ -codes.

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1ST RLZ THM

BINARY LD

BASIC

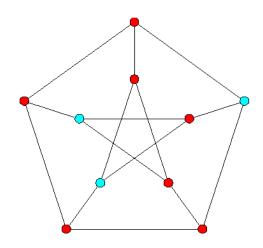
PAWILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK



 $\gamma(P) = 3$, since blue vertices form a γ -code.

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1ST RLZ THM

BINARY LD

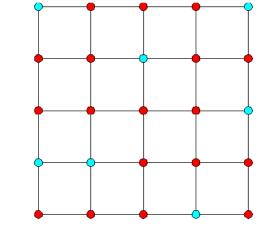
BASIC

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK



 $\gamma(P_5 \Box P_5) = 7$, as blue vertices form a γ -code.

Metric versus
binary locating
domination

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

Let G = (V, E) be a connected graph and $v, w \in V$.

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

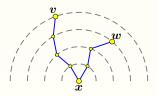
BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK Let G = (V, E) be a connected graph and $v, w \in V$.

 A vertex *x* ∈ *V* resolves the pair {*v*, *w*} if *d*(*x*, *v*) ≠ *d*(*x*, *w*)



・ロット 小田 マイロッ

Sac

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

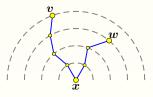
DOMINATION

LOCATION

- METRIC LD
- 1st RLZ Thm
- BINARY LD
- BASIC
- FAMILIES
- BOUNDS
- MLD=BLD
- Trees
- SOME FURTHER WORK

Let G = (V, E) be a connected graph and $v, w \in V$.

• A vertex $x \in V$ resolves the pair $\{v, w\}$ if $d(x, v) \neq d(x, w)$



S ⊆ V is a *locating set* (also called a *resolving set*) of G if every pair v, w ∈ V are resolved by some vertex x ∈ S. [SI76,HaMe76]

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

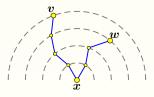
- METRIC LD
- 1st RLZ Thm
- BINARY LD
- BASIC
- FAMILIES
- BOUNDS

MLD=BLI

Trees

SOME FURTHER WORK Let G = (V, E) be a connected graph and $v, w \in V$.

 A vertex *x* ∈ *V* resolves the pair {*v*, *w*} if *d*(*x*, *v*) ≠ *d*(*x*, *w*)



- S ⊆ V is a *locating set* (also called a *resolving set*) of G if every pair v, w ∈ V are resolved by some vertex x ∈ S. [SI76,HaMe76]
- Let $S = \{u_1, \ldots, u_k\}$ be a locating set. The ordered set:

 $[d(x, u_1), \ldots, d(x, u_k)]$

is the vector of *metric coordinates* of $x \in V$ w.r.t. *S*.

Metric versus binary locating domination
I. M. Pelayo J. Cáceres C. Hernando
M. Mora L. Moreira M.L. Puertas
DOMINATION
LOCATION
METRIC LD
1st RLZ Thm
BINARY LD
BASIC FAMILIES
BOUNDS
MLD=BLD
TREES
SOME FURTHER WORK

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

• Metric basis of G: locating set of minimum cardinality.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へ⊙

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1ST RLZ THM

BINARY LD

BASIC

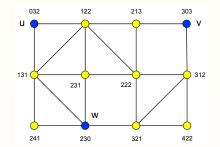
BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

- *Metric basis* of *G*: locating set of minimum cardinality.
- The *location number* (also called *metric dimension*) $\beta(G)$, is the cardinality of a metric basis.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1ST RLZ THM

BINARY LD

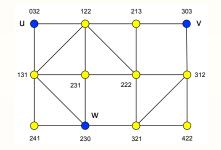
BASIC

_ _ _ _ _ _ _

TREES

SOME FURTHER WORK

- *Metric basis* of *G*: locating set of minimum cardinality.
- The *location number* (also called *metric dimension*) $\beta(G)$, is the cardinality of a metric basis.



 $\triangleright \beta(G) = 3$, since $S = \{u, v, w\}$ is a metric basis.

 \triangleright Note that vertices 222 and 422 are not dominated by S.

Metric versus binary locating domination	
I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS	
DOMINATION	
LOCATION	
METRIC LD	
1st RLZ Thm	
BINARY LD	
BASIC FAMILIES	
BOUNDS	
MLD=BLD	
TREES	
SOME FURTHER WORK	
	⁴ that is, a metric-locating-dominating set. ⁵ MLD number for short. ⁶ also denoted $\gamma_M(G)$.

《曰》《聞》《臣》《臣》

E

590

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIE5

BOUNDS

MLD=BLI

TREES

SOME FURTHER WORK

A set D of vertices in a graph G is an MLD-set⁴ if it is both locating and dominating. [HeOe04]

⁴that is, a metric-locating-dominating set. ⁵MLD number for short.

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLI

TREES

SOME FURTHER WORK A set *D* of vertices in a graph *G* is an *MLD-set*⁴ if it is both locating and dominating. [HeOe04]

▷ The *metric-location-domination number* ⁵ $\eta(G)$ ⁶ is the minimum cardinality of an MLD-set of *G*.

⁴that is, a metric-locating-dominating set. ⁵MLD number for short.

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLI

TREES

SOME FURTHER WORK A set *D* of vertices in a graph *G* is an *MLD-set*⁴ if it is both locating and dominating. [HeOe04]

▷ The *metric-location-domination number* ⁵ $\eta(G)$ ⁶ is the minimum cardinality of an MLD-set of *G*.

 \triangleright MLD-sets of order $\eta(G)$ are called η -codes.

⁴that is, a metric-locating-dominating set.

⁵MLD number for short.

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLI

Trees

SOME FURTHER WORK

- A set *D* of vertices in a graph *G* is an *MLD-set*⁴ if it is both locating and dominating. [HeOe04]
- ▷ The *metric-location-domination number* ⁵ $\eta(G)$ ⁶ is the minimum cardinality of an MLD-set of *G*.
- ▷ MLD-sets of order $\eta(G)$ are called η -codes.

⇒ Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is an MLD-set. Hence,

⁴that is, a metric-locating-dominating set. ⁵MLD number for short. ⁶also denoted $\gamma_M(G)$.

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

POUND

MLD=BL

Trees

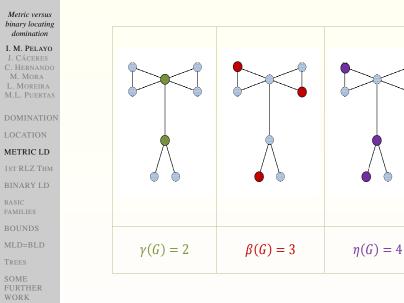
SOME FURTHEI WORK

- A set *D* of vertices in a graph *G* is an *MLD-set*⁴ if it is both locating and dominating. [HeOe04]
- ▷ The *metric-location-domination number* ⁵ $\eta(G)$ ⁶ is the minimum cardinality of an MLD-set of *G*.
- ▷ MLD-sets of order $\eta(G)$ are called η -codes.

⇒ Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is an MLD-set. Hence,

 $\max\{\gamma(\mathbf{G}),\beta(\mathbf{G})\} \leq \eta(\mathbf{G}) \leq \gamma(\mathbf{G}) + \beta(\mathbf{G})$

⁴that is, a metric-locating-dominating set. ⁵MLD number for short.



 $\max\{\gamma(G),\beta(G)\}=3\leq\eta(G)=4\leq\gamma(G)+\beta(G)=5$

<ロ> < 団> < 豆> < 豆> < 豆> < 豆</p>

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

* Bounds of $\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \gamma(G) + \beta(G)$ are tight.

Moreover:

I. M. PELAYO

J. CACERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK * Bounds of $\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \gamma(G) + \beta(G)$ are tight. Moreover:

イロト イ理ト イヨト イヨト

= nac

 \implies Given three positive integers *a*, *b*, *c* verifying that

I. M. PELAYO

C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK * Bounds of $\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \gamma(G) + \beta(G)$ are tight. Moreover:

 \implies Given three positive integers *a*, *b*, *c* verifying that

$$\max\{a,b\} \leq c \leq a+b,$$

イロト イ理ト イヨト イヨト

E nar

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

TAMILILO

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK * Bounds of $\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \gamma(G) + \beta(G)$ are tight. Moreover:

 \Rightarrow Given three positive integers *a*, *b*, *c* verifying that

$$\max\{a,b\} \le c \le a+b,$$

イロト イ理ト イヨト イヨト

E nar

there always exists a graph G such that

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK * Bounds of $\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \gamma(G) + \beta(G)$ are tight. Moreover:

 \Rightarrow Given three positive integers *a*, *b*, *c* verifying that

$$\max\{a,b\} \le c \le a+b,$$

there always exists a graph G such that

$$\gamma(G) = a, \beta(G) = b \text{ and } \eta(G) = c,$$

◆ロト ◆母 ト ◆注 ト ◆注 ト ● ● ● ● ●

I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK * Bounds of $\max\{\gamma(G), \beta(G)\} \le \eta(G) \le \gamma(G) + \beta(G)$ are tight. Moreover:

 \Rightarrow Given three positive integers *a*, *b*, *c* verifying that

$$\max\{a,b\} \le c \le a+b,$$

there always exists a graph G such that

$$\gamma(G) = a, \beta(G) = b \text{ and } \eta(G) = c,$$

except for the case: 1 = b < a < c = a + 1.

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ◆□ >

I. M. PELAYO

J. CACERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

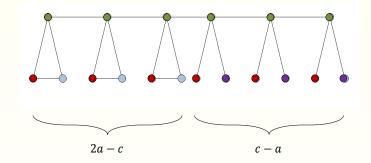
TAMILILO

BOUNDS

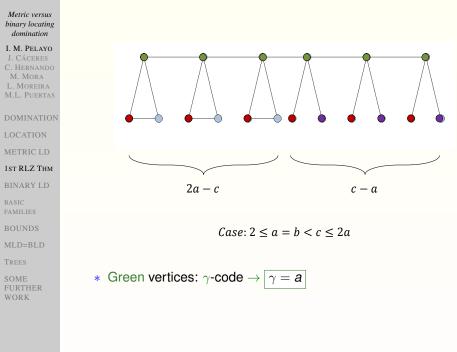
MLD=BLD

TREES

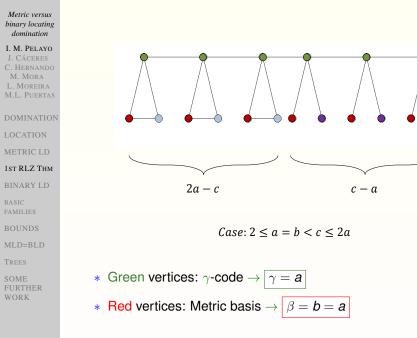
SOME FURTHER WORK



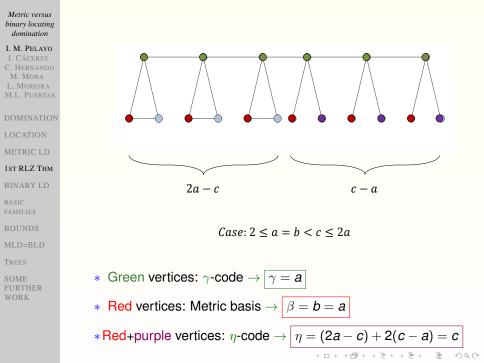
Case: $2 \le a = b < c \le 2a$



<□▶ < □▶ < □▶ < □▶ < □▶ = □ - つへで



<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Metric versus binary locating domination
I. M. PELAYO J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS
DOMINATION
LOCATION
METRIC LD
1st RLZ Thm
BINARY LD
BASIC Families
BOUNDS
MLD=BLD
TREES
SOME FURTHER WORK

▲□▶▲□▶▲三▶▲三▶ 三 つへぐ

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK ▷ A set *D* of vertices in a graph *G* is is an *BLD-set*⁷ if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$$

⁷that is, a binary-locating-dominating set.

⁸BLD number for short.

⁹also denoted $\gamma_L(G)$.

[SI88]

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK ▷ A set *D* of vertices in a graph *G* is is an *BLD-set*⁷ if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$$
 [S188]

▷ The *binary-location-domination number* ⁸ $\lambda(G)$ ⁹ is the minimum cardinality of an BLD-set of *G*.

⁷that is, a binary-locating-dominating set.

⁸BLD number for short.

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK ▷ A set *D* of vertices in a graph *G* is is an *BLD-set*⁷ if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$$
 [S188]

▷ The *binary-location-domination number* ⁸ $\lambda(G)$ ⁹ is the minimum cardinality of an BLD-set of *G*.

 \triangleright BLD-sets of order $\eta(G)$ are called λ -codes.

⁷that is, a binary-locating-dominating set.

⁸BLD number for short.

⁹also denoted $\gamma_L(G)$.

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLI

Trees

SOME FURTHEF WORK ▷ A set *D* of vertices in a graph *G* is is an *BLD-set*⁷ if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$$
 [S188]

▷ The *binary-location-domination number*⁸ $\lambda(G)$ ⁹ is the minimum cardinality of an BLD-set of *G*.

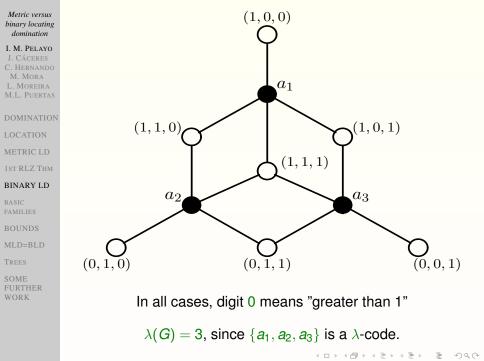
▷ BLD-sets of order $\eta(G)$ are called λ -codes.

 \implies Every BLD-set is both locating and dominating. Hence,

 $\max\{\gamma(\boldsymbol{G}), \beta(\boldsymbol{G})\} \leq \eta(\boldsymbol{G}) \leq \min\{\lambda(\boldsymbol{G}), \gamma(\boldsymbol{G}) + \beta(\boldsymbol{G})\}$

and both bounds are tight.

⁷that is, a binary-locating-dominating set. ⁸BLD number for short. ⁹also denoted $\gamma_L(G)$.



I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1ST RLZ THM

BINARY LD

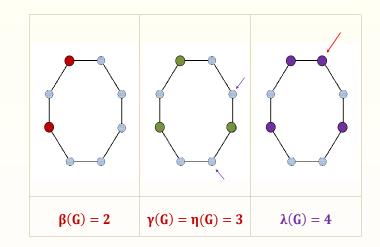
BASIC FAMILIE

BOUNDS

MLD=BLI

TREES

SOME FURTHER WORK



 $\max\{\gamma(G),\beta(G)\} = 3 \le \eta(G) = 3 \le \min\{\lambda(G),\gamma(G) + \beta(G)\} = 4$

しゃん 前々 (川) (山) (山) (山) (山)

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC FAMILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

G	γ	β	η	λ
P _n , n > 3	$\left\lceil \frac{n}{3} \right\rceil$	1	$\left\lceil \frac{n}{3} \right\rceil$	$\left\lceil \frac{2n}{5} \right\rceil$
C _n , n > 6	$\left\lceil \frac{n}{3} \right\rceil$	2	$\left\lceil \frac{n}{3} \right\rceil$	$\left\lceil \frac{2n}{5} \right\rceil$
K _n , n > 1	1	<i>n</i> – 1	<i>n</i> – 1	<i>n</i> – 1
<i>K</i> _{1,<i>n</i>−1} , <i>n</i> > 2	1	<i>n</i> – 2	<i>n</i> – 1	<i>n</i> – 1
$K_{r,n-r}, n-r \ge r > 1$	2	<i>n</i> – 2	<i>n</i> – 2	<i>n</i> – 2
W _{1,<i>n</i>-1} , <i>n</i> > 7	1	$\lfloor \frac{2n}{5} \rfloor$	$\left\lceil \frac{2n-2}{5} \right\rceil$	$\left\lceil \frac{2n-2}{5} \right\rceil$

Domination parameters of some basic graphs

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

G is a graph of order *n*, diameter $D \ge 2$, location number β , MLD number η and BLD number λ .

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1ST RLZ THM

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

G is a graph of order *n*, diameter $D \ge 2$, location number β , MLD number η and BLD number λ .

イロト イ理ト イヨト イヨト

= 900

•
$$\gamma + D \leq n \leq \gamma \cdot (1 + \Delta)$$

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1ST RLZ THM

BINARY LD

BASIC FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK *G* is a graph of order *n*, diameter $D \ge 2$, location number β , MLD number η and BLD number λ .

•
$$\gamma + D \leq n \leq \gamma \cdot (1 + \Delta)$$

$$\beta + D \le n \le \left(\left\lfloor \frac{2D}{3} \right\rfloor + 1 \right)^{\beta} + \beta \sum_{i=1}^{\lceil D/3 \rceil} (2i-1)^{\beta-1}$$

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1ST RLZ THM

BINARY LD

BASIC FAMILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK *G* is a graph of order *n*, diameter $D \ge 2$, location number β , MLD number η and BLD number λ .

•
$$\gamma + D \leq n \leq \gamma \cdot (1 + \Delta)$$

$$\beta + D \le n \le \left(\left\lfloor \frac{2D}{3} \right\rfloor + 1 \right)^{\beta} + \beta \sum_{i=1}^{\lceil D/3 \rceil} (2i-1)^{\beta-1}$$

$$\eta + \lceil \frac{2D}{3} \rceil \le n \le \eta + \eta \cdot 3^{\eta - 1}$$
 ($G \ne K_{1, n - 1}$)

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK *G* is a graph of order *n*, diameter $D \ge 2$, location number β , MLD number η and BLD number λ .

•
$$\gamma + D \leq n \leq \gamma \cdot (1 + \Delta)$$

$$\beta + D \le n \le \left(\left\lfloor \frac{2D}{3} \right\rfloor + 1 \right)^{\beta} + \beta \sum_{i=1}^{\lceil D/3 \rceil} (2i-1)^{\beta-1}$$

$$\eta + \lceil \frac{2D}{3} \rceil \le n \le \eta + \eta \cdot 3^{\eta - 1}$$
 ($G \ne K_{1, n - 1}$)

$$\lambda + \lceil \frac{3D-1}{5} \rceil \le n \le \lambda + 2^{\lambda} - 1$$

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK *G* is a graph of order *n*, diameter $D \ge 2$, location number β , MLD number η and BLD number λ .

•
$$\gamma + D \leq n \leq \gamma \cdot (1 + \Delta)$$

$$\beta + D \le n \le \left(\left\lfloor \frac{2D}{3} \right\rfloor + 1 \right)^{\beta} + \beta \sum_{i=1}^{\lceil D/3 \rceil} (2i - 1)^{\beta - 1}$$

$$\eta + \lceil \frac{2D}{3} \rceil \le n \le \eta + \eta \cdot 3^{\eta - 1}$$
 ($G
eq K_{1, n - 1}$)

$$\lambda + \lceil \frac{3D-1}{5} \rceil \le n \le \lambda + 2^{\lambda} - 1$$

* In all cases, both bounds are tight.

Metric versus
binary locating
domination

Metric versus binary locating domination	$G \neq K_{1,n-1}$ is a graph of order <i>n</i> , diameter $D \ge 2$ and MLD number η .
I. M. Pelayo J. Cáceres C. Hernando	
M. MORA L. MOREIRA M.L. PUERTAS	
DOMINATION	
LOCATION	
METRIC LD	
1st RLZ Thm	
BINARY LD	
BASIC FAMILIES	
BOUNDS	
MLD=BLD	
TREES	
SOME FURTHER WORK	
	< ロ > < 畳 > < 直 > < 直 >

590

E

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1st RLZ Thm

BINARY LD

BASIC Familie

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

•
$$\eta + \lceil \frac{2D}{3} \rceil \leq n$$
:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

- $\eta + \lceil \frac{2D}{3} \rceil \leq n$:
- * P_{D+1} is a shortest path joining two vertices such that d(u, v) = D.

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

- $\eta + \lceil \frac{2D}{3} \rceil \leq n$:
- * P_{D+1} is a shortest path joining two vertices such that d(u, v) = D.
 * η(P_{D+1}) = [^{D+1}/₃].

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1ST RLZ THM

BINARY LD

BASIC FAMILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

- $\eta + \lceil \frac{2D}{3} \rceil \le n$:
- *P*_{D+1} is a shortest path joining two vertices such that d(u, v) = D.
 η(*P*_{D+1}) = [^{D+1}/₃].

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

* $\eta \leq n - (D+1) + \lceil \frac{D+1}{3} \rceil = n - \lceil \frac{2D}{3} \rceil.$

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

- $\eta + \lceil \frac{2D}{3} \rceil \le n$:
- * P_{D+1} is a shortest path joining two vertices such that d(u, v) = D. * $\eta(P_{D+1}) = \lceil \frac{D+1}{3} \rceil$.

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

- * $\eta \leq n (D+1) + \lceil \frac{D+1}{3} \rceil = n \lceil \frac{2D}{3} \rceil.$
- $n \leq \eta + \eta \cdot 3^{\eta-1}$:

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC Familie

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

- $\eta + \lceil \frac{2D}{3} \rceil \le n$:
- * P_{D+1} is a shortest path joining two vertices such that d(u, v) = D.* $\eta(P_{D+1}) = \lceil \frac{D+1}{2} \rceil.$
- * $\eta \leq n (D+1) + \lceil \frac{D+1}{3} \rceil = n \lceil \frac{2D}{3} \rceil.$
- $n \leq \eta + \eta \cdot 3^{\eta-1}$:

* $S = \{u_1, \dots, u_\eta\}$ is an η -set and $d(u_i, u_j) = d_{ij}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1ST RLZ THM

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

- $\eta + \lceil \frac{2D}{3} \rceil \le n$:
- * P_{D+1} is a shortest path joining two vertices such that d(u, v) = D.* $\eta(P_{D+1}) = \lceil \frac{D+1}{3} \rceil.$ * $\eta \le n - (D+1) + \lceil \frac{D+1}{3} \rceil = n - \lceil \frac{2D}{3} \rceil.$
- $n \leq \eta + \eta \cdot 3^{\eta-1}$:
- * $S = \{u_1, \ldots, u_\eta\}$ is an η -set and $d(u_i, u_j) = d_{ij}$. * If $x = (x_1, \ldots, x_\eta)$ then, for some $i \in \{1, \ldots, \eta\}$, $x_i = d(x, u_1) = 1$.

▲ロト ▲□ ト ▲ヨト ▲ヨト - ヨ - りゅつ

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

- $\eta + \lceil \frac{2D}{3} \rceil \le n$:
- * P_{D+1} is a shortest path joining two vertices such that d(u, v) = D.* $\eta(P_{D+1}) = \lceil \frac{D+1}{3} \rceil.$ * $\eta \le n - (D+1) + \lceil \frac{D+1}{3} \rceil = n - \lceil \frac{2D}{3} \rceil.$
 - $n \leq \eta + \eta \cdot 3^{\eta-1}$:
 - * $S = \{u_1, ..., u_\eta\}$ is an η -set and $d(u_i, u_j) = d_{ij}$. * If $x = (x_1, ..., x_\eta)$ then, for some $i \in \{1 ..., \eta\}$, $x_i = d(x, u_1) = 1$.

* For every $j \neq i$, $x_j = d(x, u_j) \in \{d_{ij} - 1, d_{ij}, d_{ij} + 1\}$.

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK $G \neq K_{1,n-1}$ is a graph of order *n*, diameter $D \ge 2$ and MLD number η .

- $\eta + \lceil \frac{2D}{3} \rceil \le n$:
- * P_{D+1} is a shortest path joining two vertices such that d(u, v) = D.* $\eta(P_{D+1}) = \lceil \frac{D+1}{3} \rceil.$ * $\eta \le n - (D+1) + \lceil \frac{D+1}{2} \rceil = n - \lceil \frac{2D}{2} \rceil.$
- $n \leq \eta + \eta \cdot 3^{\eta-1}$:
- * $S = \{u_1, ..., u_\eta\}$ is an η -set and $d(u_i, u_j) = d_{ij}$. * If $x = (x_1, ..., x_\eta)$ then, for some $i \in \{1 ..., \eta\}$, $x_i = d(x, u_1) = 1$.

* For every $j \neq i$, $x_j = d(x, u_j) \in \{d_{ij} - 1, d_{ij}, d_{ij} + 1\}$.

• $\lambda + \lceil \frac{3D-1}{5} \rceil \le n \le \lambda + 2^{\lambda} - 1$ is similarly proved.

I. M. PELAYO

- J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS
- DOMINATION
- LOCATION
- METRIC LI
- 1st RLZ Thm
- BINARY LD
- BASIC Familie
- BOUNDS

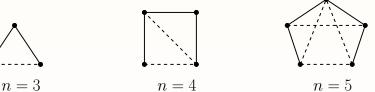
MLD=BLD

Trees

SOME FURTHER WORK

•
$$\eta(G) = 1 \Leftrightarrow \lambda(G) = 1 \Leftrightarrow G = P_2$$

- $\lambda(G) = 2 \Rightarrow \eta(G) = 2$. [converse false]
- * $\lambda = 2 \Rightarrow n \le \lambda + 2^{\lambda} 1 = 5$
- * There are 16 graphs s.t. $\lambda = 2$:



▲□ > ▲□ > ▲豆 > ▲豆 > ▲豆 > ④ < ⊙

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATIO

METRIC LE

1ST RLZ THM

BINARY LD

BASIC Familie

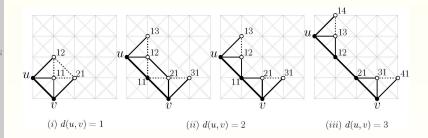
BOUNDS

MLD=BLD

Trees

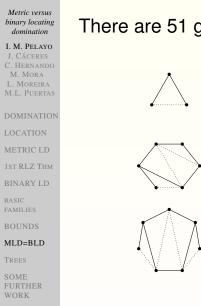
SOME FURTHER WORK

There are 51 graphs satisfying $\eta = 2$

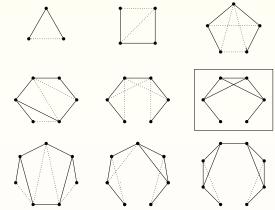


 $\triangleright \eta = 2 \Rightarrow n \le \eta + \eta \cdot 3^{\eta - 1} = 8$

- \triangleright Every graph verifying $\beta \leq$ 2 can be embedded into the king grid.
- ▷ If $\{u, v\}$ is an η -set, then it is dominant, and hence $d(u, v) \leq 3$.



There are 51 graphs satisfying $\eta =$ 2:



 \triangleright For all of these graphs, 2 $\leq \lambda \leq$ 4.

Metric versus binary locating domination
I. M. Pelayo J. Cáceres C. Hernando
M. Mora L. Moreira M.L. Puertas
DOMINATION
LOCATION
METRIC LD 1st RLZ Thm
BINARY LD
BASIC Families
BOUNDS
MLD=BLD
Trees
SOME FURTHER WORK

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

•
$$\eta(G) = n - 1 \Leftrightarrow \lambda(G) = n - 1 \Leftrightarrow G = \{K_n, K_{1,n-1}\}$$

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

$$\eta(G) = n - 1 \Leftrightarrow \lambda(G) = n - 1 \Leftrightarrow G = \{K_n, K_{1,n-1}\}$$

$$\lambda(G) = n - 2 \iff \eta(G) = n - 2 \iff G \in \bigcup_{i=1}^{7} F_i$$

where (see [HeOe04]) $F_1 = \{K_{r,s} : 2 \le r \le s\}$, etc.

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

•
$$\eta(G) = n - 1 \Leftrightarrow \lambda(G) = n - 1 \Leftrightarrow G = \{K_n, K_{1,n-1}\}$$

$$\lambda(G) = n - 2 \iff \eta(G) = n - 2 \iff G \in \bigcup_{i=1}^{7} F_i$$

where (see [HeOe04]) $F_1 = \{K_{r,s} : 2 \le r \le s\}$, etc.

•
$$\lambda(G) = n - 3 \Leftrightarrow n - 4 \le \eta(G) \le n - 3$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC Familie

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

•
$$\eta(G) = n - 1 \Leftrightarrow \lambda(G) = n - 1 \Leftrightarrow G = \{K_n, K_{1,n-1}\}$$

$$\lambda(G) = n - 2 \iff \eta(G) = n - 2 \iff G \in \bigcup_{i=1}^{7} F_i$$

where (see [HeOe04]) $F_1 = \{K_{r,s} : 2 \le r \le s\}$, etc.

イロト イロト イヨト イヨト

E

$$\lambda(G) = n - 3 \Leftrightarrow n - 4 \le \eta(G) \le n - 3$$

• If
$$D = 2$$
, then $\lambda(G) = \eta(G)$ [for $D \ge 3$, false]

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

6

1

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC Familie

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

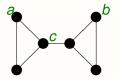
•
$$\eta(G) = n - 1 \Leftrightarrow \lambda(G) = n - 1 \Leftrightarrow G = \{K_n, K_{1,n-1}\}$$

$$\lambda(G) = n - 2 \iff \eta(G) = n - 2 \iff G \in \bigcup_{i=1}^{7} F_i$$

where (see [HeOe04]) $F_1 = \{K_{r,s} : 2 \le r \le s\}$, etc.

$$\lambda(G) = n - 3 \Leftrightarrow n - 4 \le \eta(G) \le n - 3$$

If
$$D = 2$$
, then $\lambda(G) = \eta(G)$ [for $D \ge 3$, false]



▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

ć

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

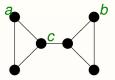
$$\eta(G) = n - 1 \Leftrightarrow \lambda(G) = n - 1 \Leftrightarrow G = \{K_n, K_{1,n-1}\}$$

$$\lambda(G) = n - 2 \iff \eta(G) = n - 2 \iff G \in \bigcup_{i=1}^{7} F_i$$

where (see [HeOe04]) $F_1 = \{K_{r,s} : 2 \le r \le s\}$, etc.

$$\lambda(G) = n - 3 \Leftrightarrow n - 4 \le \eta(G) \le n - 3$$

If
$$D = 2$$
, then $\lambda(G) = \eta(G)$ [for $D \ge 3$, false]



イロト イ理ト イヨト イヨト

Э

500

• $\{a, b\}$ is an η -set and $\{a, b, c\}$ is a λ -set.

4

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1st RLZ Thm

BINARY LD

BASIC FAMILIE

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

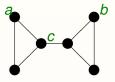
$$\eta(G) = n - 1 \Leftrightarrow \lambda(G) = n - 1 \Leftrightarrow G = \{K_n, K_{1,n-1}\}$$

$$\lambda(G) = n - 2 \iff \eta(G) = n - 2 \iff G \in \bigcup_{i=1}^7 F_i$$

where (see [HeOe04]) $F_1 = \{K_{r,s} : 2 \le r \le s\}$, etc.

$$\lambda(G) = n - 3 \Leftrightarrow n - 4 \le \eta(G) \le n - 3$$

If
$$D = 2$$
, then $\lambda(G) = \eta(G)$ [for $D \ge 3$, false]



- $\{a, b\}$ is an η -set and $\{a, b, c\}$ is a λ -set.
- D = 3 and $n 4 = 2 = \eta(G) < \lambda(G) = 3 = n 3$

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

T is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LE

1ST RLZ THM

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK *T* is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

•
$$\eta(T) = \gamma(T) + \ell(T) - s(T)$$

[HeOe04]

<日 > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1ST RLZ THM

BINARY LD

BASIC Familie

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK *T* is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

•
$$\eta(T) = \gamma(T) + \ell(T) - s(T)$$

$$\frac{n+\ell(T)-s(T)+1}{3} \le \lambda(T) \le \frac{n+\ell(T)-s(T)}{2}$$

[BIChMaMoSe07]

<日 > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

METRIC LI

1st RLZ Thm

BINARY LD

BASIC

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK *T* is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

•
$$\eta(T) = \gamma(T) + \ell(T) - s(T)$$

 $\eta \leq \lambda \leq 2\eta - 2$

$$rac{n+\ell(T)-s(T)+1}{3} \leq \lambda(T) \leq rac{n+\ell(T)-s(T)}{2}$$

[BIChMaMoSe07]

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

METRIC LI

1st RLZ Thm

BINARY LD

BASIC

DOUND

MLD=BLI

TREES

SOME FURTHE WORK *T* is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

•
$$\eta(T) = \gamma(T) + \ell(T) - s(T)$$

 $\eta \leq \lambda \leq 2\eta - 2$

$$rac{n+\ell(T)-s(T)+1}{3} \leq \lambda(T) \leq rac{n+\ell(T)-s(T)}{2}$$

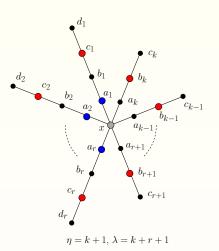
[BIChMaMoSe07]

[HeOe04]

[HeOe04]

⇒ Given two integers *a*, *b* s.t. $3 \le a \le b \le 2a - 2$, there always exists a tree *T* s.t. $\eta(G) = a$ and $\lambda(G) = b$.

Spider with k legs, r of them having 4 edges, and the rest 3 edges.



I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATIO

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

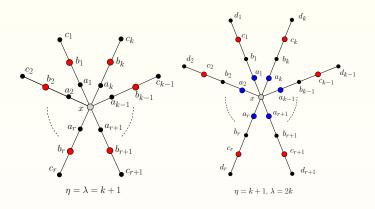
BASIC Famil IF

BOUNDS

MLD=BLE

TREES

SOME FURTHER WORK



<u>LEFT</u>: Spider with k legs, all of them having 3 edges. <u>RIGHT</u>: Spider with k legs, all of them having 4 edges.

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1ST RLZ THM

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK *T* is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LI

1ST RLZ THM

BINARY LD

BASIC

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK *T* is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

$$\frac{n+2(\ell(T)-s(T))+1}{3} \leq \lambda(T) \leq \frac{n+\ell(T)-s(T)}{2}$$

• Both bounds are tight. Moreover,

・ロト・「四ト・「田下・「田下・(日下

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

- DOMINATION
- LOCATION
- METRIC LI
- 1st RLZ Thm

- BINARY LD
- BASIC
- BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK *T* is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

-

Dac

$$\frac{n+2(\ell(T)-s(T))+4}{6} \le \eta(T) \le \frac{n+\ell(T)-s(T)}{2}$$

• The lower bound seems not to be tight.

$$\frac{n+2(\ell(T)-s(T))+1}{3} \leq \lambda(T) \leq \frac{n+\ell(T)-s(T)}{2}$$

• Both bounds are tight. Moreover,

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

- DOMINATION
- LOCATION
- METRIC LE
- 1st RLZ Thm
- BINARY LD
- BASIC
- FAMILIES
- BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK T is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

$$\frac{n+2(\ell(T)-s(T))+4}{6} \le \eta(T) \le \frac{n+\ell(T)-s(T)}{2}$$

- The lower bound seems not to be tight.
 - $\frac{n+2(\ell(T)-s(T))+1}{3} \leq \lambda(T) \leq \frac{n+\ell(T)-s(T)}{2}$
- Both bounds are tight. Moreover,
- * That is to say,
 - $2\lambda [\ell(T) s(T)] \le n \le 3\lambda 2[\ell(T) s(T)] 1$

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

- DOMINATION
- LOCATION
- METRIC LE
- 1st RLZ Thm
- BINARY LD
- BASIC
-

MID DU

TREES

SOME FURTHER WORK *T* is a tree having $\ell(T)$ leaves, s(T) support vertices, domination number $\gamma(T)$, MLD number $\eta(T)$ and BLD number $\lambda(T)$.

$$\boxed{\frac{n+2(\ell(T)-s(T))+4}{6} \le \eta(T) \le \frac{n+\ell(T)-s(T)}{2}}$$

- The lower bound seems not to be tight.
 - $\frac{n+2(\ell(T)-s(T))+1}{3} \leq \lambda(T) \leq \frac{n+\ell(T)-s(T)}{2}$
- Both bounds are tight. Moreover,
- * That is to say,
 - $2\lambda [\ell(T) s(T)] \le n \le 3\lambda 2[\ell(T) s(T)] 1$
- $\implies \text{Given three integers } a, b, c \text{ s.t. } 0 < c < b < a \text{ and} \\ 2b c \le a \le 3b 2c 1 \text{, there always exists a tree } T \\ \text{s.t. } |V(T)| = a, \lambda(T) = b \text{ and } I(T) s(T) = c. \end{cases}$

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

TREES

SOME FURTHER WORK

SOME FURTHER WORK

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1st RLZ Thm

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

SOME FURTHER WORK

In [HeOe04], it was proved that ^λ/_η can not be upperbounded by a constant. Proving or disproving that, for some constant *c*, η ≤ λ ≤ *c* · η².

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1ST RLZ THM

BINARY LD

BASIC

FAMILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

SOME FURTHER WORK

- In [HeOe04], it was proved that ^λ/_η can not be upperbounded by a constant. Proving or disproving that, for some constant *c*, η ≤ λ ≤ c ⋅ η².
- We have proved that every tree satisfies $\frac{n+2(\ell(T)-s(T))+4}{6} \leq \eta(T)$ We believe that this bound is not tight. We conjecture that the tight lowerbound must be very similar to this one: $\frac{n+2(\ell(T)-s(T))+4}{4} \leq \eta(T)$.

I. M. PELAYO

J. CÁCERES C. HERNANDO M. MORA L. MOREIRA M.L. PUERTAS

- DOMINATION
- LOCATION
- METRIC LD
- 1st RLZ Thm
- BINARY LD
- BASIC
- FAMILIES

BOUNDS

MLD=BLD

Trees

SOME FURTHER WORK

SOME FURTHER WORK

- In [HeOe04], it was proved that ^λ/_η can not be upperbounded by a constant. Proving or disproving that, for some constant *c*, η ≤ λ ≤ *c* · η².
- We have proved that every tree satisfies $\frac{n+2(\ell(T)-s(T))+4}{6} \leq \eta(T)$ We believe that this bound is not tight. We conjecture that the tight lowerbound must be very similar to this one: $\frac{n+2(\ell(T)-s(T))+4}{4} \leq \eta(T)$.
- The only significant result involving the Cartesian product operator is the following one:

$$\lambda(\mathcal{K}_n \Box \mathcal{K}_m) = \begin{cases} n-1 & \text{if } 2m-1 < n \\ \lfloor \frac{2}{3}(n+m-1) \rfloor + 1 & \text{if } n \le 2m-1, n+m = 3k+2 \\ \lfloor \frac{2}{3}(n+m-1) \rfloor & \text{in any other case} \end{cases}$$