
Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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G = (V ,E) is a simple finite connected graph.
For every u ∈ V ,

N(u) = {v ∈ V : uv ∈ E} , and N[u] = N(u) ∪ {u} .

B A set Ω of vertices in a graph G is a dominating set if
every vertex of V (G) \ Ω has a neighbour in Ω.

B That is, if for every u ∈ V (G) \ Ω, N(u) ∩ Ω 6= ∅

B The domination number of G, denoted by γ(G), is the
minimum cardinality of a dominating set of G.

B Dominating sets of order γ(G) are called γ-codes.
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Let G = (V ,E) be a connected graph and v ,w ∈ V .

• A vertex x ∈ V resolves the pair {v ,w} if
d(x , v) 6= d(x ,w)

x

v

w

• S ⊆ V is a locating set (also called a resolving set) of G
if every pair v ,w ∈ V are resolved by some vertex
x ∈ S. [Sl76,HaMe76]

• Let S = {u1, . . . ,uk} be a locating set. The ordered set:

[d(x ,u1), . . . ,d(x ,uk )]

is the vector of metric coordinates of x ∈ V w.r.t. S.
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• Metric basis of G: locating set of minimum cardinality.

• The location number (also called metric dimension)
β(G), is the cardinality of a metric basis.

V.

w

vu

422321230241

312
222231

131

303213122032

B β(G) = 3, since S = {u, v ,w} is a metric basis.
B Note that vertices 222 and 422 are not dominated by S.



Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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B A set D of vertices in a graph G is an MLD-set 4 if it is
both locating and dominating. [HeOe04]

B The metric-location-domination number 5 η(G) 6 is the
minimum cardinality of an MLD-set of G.

B MLD-sets of order η(G) are called η-codes.

=⇒ Let S1,S2 ⊆ V (G). If S1 is dominating and S2 is
locating, then S1 ∪ S2 is an MLD-set. Hence,

max{γ(G), β(G)} ≤ η(G) ≤ γ(G) + β(G)

4that is, a metric-locating-dominating set.
5MLD number for short.
6also denoted γM(G).
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max{γ(G), β(G)} = 3 ≤ η(G) = 4 ≤ γ(G) + β(G) = 5
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∗ Bounds of max{γ(G), β(G)} ≤ η(G) ≤ γ(G) + β(G) are tight.

Moreover:

=⇒ Given three positive integers a,b, c verifying that

max{a,b} ≤ c ≤ a + b,

there always exists a graph G such that

γ(G) = a, β(G) = b and η(G) = c,

except for the case: 1 = b < a < c = a + 1 .
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J. CÁCERES

C. HERNANDO
M. MORA

L. MOREIRA
M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1ST RLZ THM

BINARY LD

BASIC
FAMILIES

BOUNDS

MLD=BLD

TREES

SOME
FURTHER
WORK

∗ Bounds of max{γ(G), β(G)} ≤ η(G) ≤ γ(G) + β(G) are tight.

Moreover:

=⇒ Given three positive integers a,b, c verifying that

max{a,b} ≤ c ≤ a + b,

there always exists a graph G such that

γ(G) = a, β(G) = b and η(G) = c,

except for the case: 1 = b < a < c = a + 1 .



Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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∗ Green vertices: γ-code→ γ = a

∗ Red vertices: Metric basis→ β = b = a

∗Red+purple vertices: η-code→ η = (2a− c) + 2(c − a) = c
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∗ Green vertices: γ-code→ γ = a

∗ Red vertices: Metric basis→ β = b = a

∗Red+purple vertices: η-code→ η = (2a− c) + 2(c − a) = c
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B A set D of vertices in a graph G is is an BLD-set 7 if for
every two vertices u, v ∈ V (G) \ D,

∅ 6= N(u) ∩ D 6= N(v) ∩ D 6= ∅ [Sl88]

B The binary-location-domination number 8 λ(G) 9 is the
minimum cardinality of an BLD-set of G.

B BLD-sets of order η(G) are called λ-codes.

=⇒ Every BLD-set is both locating and dominating. Hence,

max{γ(G), β(G)} ≤ η(G) ≤ min{λ(G), γ(G) + β(G)}

and both bounds are tight.

7that is, a binary-locating-dominating set.
8BLD number for short.
9also denoted γL(G).
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(1, 0, 0)

a1

(1, 1, 0)

a2

(1, 0, 1)

(1, 1, 1)

(0, 1, 1)(0, 1, 0) (0, 0, 1)

a3

In all cases, digit 0 means ”greater than 1”

λ(G) = 3, since {a1,a2,a3} is a λ-code.



Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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max{γ(G), β(G)} = 3 ≤ η(G) = 3 ≤ min{λ(G), γ(G) + β(G)} = 4
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G γ β η λ

Pn, n > 3 dn
3e 1 dn

3e d2n
5 e

Cn, n > 6 dn
3e 2 dn

3e d2n
5 e

Kn, n > 1 1 n − 1 n − 1 n − 1
K1,n−1, n > 2 1 n − 2 n − 1 n − 1

Kr ,n−r , n − r ≥ r > 1 2 n − 2 n − 2 n − 2
W1,n−1, n > 7 1 b2n

5 c d2n−2
5 e d2n−2

5 e

Domination parameters of some basic graphs
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G is a graph of order n, diameter D ≥ 2, location number β,
MLD number η and BLD number λ.

• γ + D ≤ n ≤ γ · (1 + ∆)

• β + D ≤ n ≤
(⌊

2D
3

⌋
+ 1
)β

+ β
∑dD/3e

i=1 (2i − 1)β−1

• η + d2D
3 e ≤ n ≤ η + η · 3η−1 (G 6= K1,n−1)

• λ + d3D−1
5 e ≤ n ≤ λ + 2λ − 1

∗ In all cases, both bounds are tight.
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G 6= K1,n−1 is a graph of order n, diameter D ≥ 2 and MLD
number η.

• η + d2D
3 e ≤ n :

∗ PD+1 is a shortest path joining two vertices such that
d(u, v) = D.
∗ η(PD+1) = dD+1

3 e.
∗ η ≤ n − (D + 1) + dD+1

3 e = n − d2D
3 e.

• n ≤ η + η · 3η−1 :

∗ S = {u1, . . . ,uη} is an η-set and d(ui ,uj) = dij .
∗ If x = (x1, . . . , xη) then, for some i ∈ {1 . . . , η},

xi = d(x ,u1) = 1.
∗ For every j 6= i , xj = d(x ,uj) ∈ {dij − 1,dij ,dij + 1}.

• λ+ d3D−1
5 e ≤ n ≤ λ+ 2λ − 1 is similarly proved.
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J. CÁCERES

C. HERNANDO
M. MORA

L. MOREIRA
M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1ST RLZ THM

BINARY LD

BASIC
FAMILIES

BOUNDS

MLD=BLD

TREES

SOME
FURTHER
WORK

G 6= K1,n−1 is a graph of order n, diameter D ≥ 2 and MLD
number η.

• η + d2D
3 e ≤ n :

∗ PD+1 is a shortest path joining two vertices such that
d(u, v) = D.
∗ η(PD+1) = dD+1

3 e.
∗ η ≤ n − (D + 1) + dD+1

3 e = n − d2D
3 e.

• n ≤ η + η · 3η−1 :

∗ S = {u1, . . . ,uη} is an η-set and d(ui ,uj) = dij .
∗ If x = (x1, . . . , xη) then, for some i ∈ {1 . . . , η},

xi = d(x ,u1) = 1.

∗ For every j 6= i , xj = d(x ,uj) ∈ {dij − 1,dij ,dij + 1}.

• λ+ d3D−1
5 e ≤ n ≤ λ+ 2λ − 1 is similarly proved.



Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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3 e ≤ n :

∗ PD+1 is a shortest path joining two vertices such that
d(u, v) = D.
∗ η(PD+1) = dD+1

3 e.
∗ η ≤ n − (D + 1) + dD+1

3 e = n − d2D
3 e.

• n ≤ η + η · 3η−1 :

∗ S = {u1, . . . ,uη} is an η-set and d(ui ,uj) = dij .
∗ If x = (x1, . . . , xη) then, for some i ∈ {1 . . . , η},

xi = d(x ,u1) = 1.
∗ For every j 6= i , xj = d(x ,uj) ∈ {dij − 1,dij ,dij + 1}.

• λ+ d3D−1
5 e ≤ n ≤ λ+ 2λ − 1 is similarly proved.
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J. CÁCERES

C. HERNANDO
M. MORA

L. MOREIRA
M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1ST RLZ THM

BINARY LD

BASIC
FAMILIES

BOUNDS

MLD=BLD

TREES

SOME
FURTHER
WORK

• η(G) = 1⇔ λ(G) = 1 ⇔ G = P2

• λ(G) = 2⇒ η(G) = 2 . [converse false]

∗ λ = 2⇒ n ≤ λ + 2λ − 1 = 5
∗ There are 16 graphs s.t. λ = 2:

n = 3 n = 4 n = 5
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There are 51 graphs satisfying η = 2

B η = 2⇒ n ≤ η + η · 3η−1 = 8
B Every graph verifying β ≤ 2 can be embedded into the

king grid.
B If {u, v} is an η-set, then it is dominant, and hence

d(u, v) ≤ 3.
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There are 51 graphs satisfying η = 2:

B For all of these graphs, 2 ≤ λ ≤ 4.
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• η(G) = n − 1⇔ λ(G) = n − 1 ⇔ G = {Kn,K1,n−1}

• λ(G) = n − 2⇐⇒ η(G) = n − 2 ⇔ G ∈ ∪7
i=1Fi

where (see [HeOe04]) F1 = {Kr ,s : 2 ≤ r ≤ s}, etc.

• λ(G) = n − 3⇔ n − 4 ≤ η(G) ≤ n − 3

• If D = 2, then λ(G) = η(G) [for D ≥ 3, false]

w
w w w w

w
�
�

@
@ �

�

@
@

ba

c

• {a,b} is an η-set and {a,b, c} is a λ-set.
• D = 3 and n − 4 = 2 = η(G) < λ(G) = 3 = n − 3



Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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• {a,b} is an η-set and {a,b, c} is a λ-set.

• D = 3 and n − 4 = 2 = η(G) < λ(G) = 3 = n − 3



Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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T is a tree having `(T ) leaves, s(T ) support vertices, domination
number γ(T ), MLD number η(T ) and BLD number λ(T ).

• η(T ) = γ(T ) + `(T )− s(T ) [HeOe04]

• n+`(T )−s(T )+1
3 ≤ λ(T ) ≤ n+`(T )−s(T )

2 [BlChMaMoSe07]

• η ≤ λ ≤ 2η − 2 [HeOe04]

=⇒ Given two integers a,b s.t. 3 ≤ a ≤ b ≤ 2a− 2, there
always exists a tree T s.t. η(G) = a and λ(G) = b.
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J. CÁCERES

C. HERNANDO
M. MORA

L. MOREIRA
M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1ST RLZ THM

BINARY LD

BASIC
FAMILIES

BOUNDS

MLD=BLD

TREES

SOME
FURTHER
WORK

T is a tree having `(T ) leaves, s(T ) support vertices, domination
number γ(T ), MLD number η(T ) and BLD number λ(T ).

• η(T ) = γ(T ) + `(T )− s(T ) [HeOe04]

• n+`(T )−s(T )+1
3 ≤ λ(T ) ≤ n+`(T )−s(T )

2 [BlChMaMoSe07]

• η ≤ λ ≤ 2η − 2 [HeOe04]

=⇒ Given two integers a,b s.t. 3 ≤ a ≤ b ≤ 2a− 2, there
always exists a tree T s.t. η(G) = a and λ(G) = b.



Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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a2

ar ar+1

ak−1

ak

b1

b2

br br+1

bk−1

bk

c1

c2

cr

ck−1

ck

cr+1

d2

d1

dr

η = k + 1, λ = k + r + 1

x

Spider with k legs, r of them having 4 edges, and the rest 3
edges.



Metric versus
binary locating

domination

I. M. PELAYO
J. CÁCERES
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η = k + 1, λ = 2k

x

LEFT: Spider with k legs, all of them having 3 edges.
RIGHT: Spider with k legs, all of them having 4 edges.
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T is a tree having `(T ) leaves, s(T ) support vertices, domination
number γ(T ), MLD number η(T ) and BLD number λ(T ).

• n+2(`(T )−s(T ))+4
6 ≤ η(T ) ≤ n+`(T )−s(T )

2

• The lower bound seems not to be tight.

• n+2(`(T )−s(T ))+1
3 ≤ λ(T ) ≤ n+`(T )−s(T )

2

• Both bounds are tight. Moreover,

∗ That is to say,
2λ− [`(T )− s(T )] ≤ n ≤ 3λ− 2[`(T )− s(T )]− 1

=⇒ Given three integers a,b, c s.t. 0 < c < b < a and
2b − c ≤ a ≤ 3b − 2c − 1, there always exists a tree T
s.t. |V (T )| = a, λ(T ) = b and l(T )− s(T ) = c.
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T is a tree having `(T ) leaves, s(T ) support vertices, domination
number γ(T ), MLD number η(T ) and BLD number λ(T ).

• n+2(`(T )−s(T ))+4
6 ≤ η(T ) ≤ n+`(T )−s(T )

2

• The lower bound seems not to be tight.

• n+2(`(T )−s(T ))+1
3 ≤ λ(T ) ≤ n+`(T )−s(T )

2

• Both bounds are tight. Moreover,

∗ That is to say,
2λ− [`(T )− s(T )] ≤ n ≤ 3λ− 2[`(T )− s(T )]− 1

=⇒ Given three integers a,b, c s.t. 0 < c < b < a and
2b − c ≤ a ≤ 3b − 2c − 1, there always exists a tree T
s.t. |V (T )| = a, λ(T ) = b and l(T )− s(T ) = c.
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J. CÁCERES

C. HERNANDO
M. MORA

L. MOREIRA
M.L. PUERTAS

DOMINATION

LOCATION

METRIC LD

1ST RLZ THM

BINARY LD

BASIC
FAMILIES

BOUNDS

MLD=BLD

TREES

SOME
FURTHER
WORK

SOME FURTHER WORK

• In [HeOe04], it was proved that λη can not be
upperbounded by a constant. Proving or disproving
that, for some constant c, η ≤ λ ≤ c · η2 .

• We have proved that every tree satisfies
n+2(`(T )−s(T ))+4

6 ≤ η(T ). We believe that this bound is
not tight. We conjecture that the tight lowerbound must
be very similar to this one: n+2(`(T )−s(T ))+4

4 ≤ η(T ).

• The only significant result involving the Cartesian
product operator is the following one:

λ(Kn�Km) =


n − 1 if 2m − 1 < n

b 2
3 (n + m − 1)c+ 1 if n ≤ 2m − 1, n + m = 3k + 2
b 2

3 (n + m − 1)c in any other case
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